新课程背景下小学数学教师 本体性知识的缺失及其对策研究(1)

时间:2017-12-27 编辑:周水 手机版
摘要:在新课改背景下,小学数学教师本体性知识的缺失现象日益显现。调研与测试表明,小学数学教师本体性知识的缺失,主要集中在概率统计、图形变换、几何证明与数论初步等方面。分析研究其原因,一方面是由于学历教育数学课程内容以及数学素养培养的局限性,另一方面是由于教师思维的“童化”,即伴随教师重建儿童心智的努力而出现的本体性知识及其思维的退化。相应的对策是:调整、充实职前教育数学课程的内容;改进职前教育数学课程的教学方法;加强职后培训的针对性,以引起教师自身的关注,并结合教材分析与课例点评,对普遍缺失的本体性知识予以弥补。关键词:小学数学教师;本体性知识一、问题的由来与本课题的前期研究课程改革给教师专业发展带来了新的挑战。尽管改革的成败取决于方方面面众多因素,但教师是其中的关键。面对前所未有的挑战,教师的知识状况是否适应新的要求?如有不适,怎样应对?这是我们必须认真加以研究并做出回答的问题。一般认为,教师的知识可以分为三个方面,即教师的本体性知识、实践性知识和条件性知识。本研究主要针对小学数学教师本体性知识的现状展开。研究者认为,数学教师的本体性知识,既包括显性的可言传数学知识,也包括隐性的默会知识即数学能力、素养,是两者的统一体。(一)国外关于数学教师本体性知识的研究结论国外有关数学教师本体性知识的研究,影响较大的当数美国“全国数学教师理事会”(NCTM)于20世纪60年代进行的“全国数学能力纵向研究”所得出的相关结论。这里,引用美国学者芬内玛(Elizabeth Fennema)和弗伦克(Megan Loef Franke)《教师的知识及其影响》一文中的综述:“尽管相信数学知识的重要性,尽管有迹象表明一些教师不具备相应的数学知识,但研究工作对教师的数学知识和学生学习之间存在着直接关系的看法并不给以很大支持。”“NLSMA调查者仔细地核实了教师所学过的数学课程的数量,然后测算这些数量和学生学习之间的相关系数,他们没有发现重要的关系。5年后,艾森伯格(Eisenbeng)重复这一研究,得到了同样的结论。”[1](222)这类研究的明显不足是对教师所掌握知识的测度不够合理。显然,用教师先前学过的数学课程数目作量化指标,难以反映教师对数学知识的理解程度和应用水平。正如芬内玛和弗伦克针对这类研究中关于知识测试与相关系数计算方面的问题分析后所指出的:“可能是不适当的知识测量与相对有限的研究方法隐蔽了原本存在着的教师知识与学生学习之间的相互关系。”[1](223)再者,将教师数学知识的一个自变量对应于学生成绩的因变量,使得这类研究“对教师的知识是如何综合起来的,或在所学大学课程与课堂教学之间是否存在着相互关系,没有提出多少依据”。[2]因此,“人们的普遍反应是,我们不应该轻易地去否定数学知识的重要性,而应对这一问题作出更为深入的研究”。[3](28)(二)国内关于数学教师本体性知识的研究结论在我国,长期以来,一种根深蒂固的观念是,教师必须具有足够的学科知识,才能应付自如地教学。“给学生一杯水,教师自身要有一桶水”便是这一观念的真实反映。然而,到了20世纪90年代中期,国内也有研究得出与上述NLSMA调查者相类似的结论。如林崇德等人的研究(1996)称:“我们的研究表明,教师的本体性知识与学生成绩之间几乎不存在统计上的关系。我们认为,教师需要知道一部分学科知识,以达到某种水平,但并非本体性知识越多越好。”[4]由于没有报告研究的方法与过程,因此无从对“几乎不存在统计上的关系”作出评估。就结论而言,可以认为只是陈述了一个众所周知的判断:教师拥有一定的知识,对于搞好教学是必要的,但不具充分性。由此得出的推论是,从某种意义上说,教学的中心任务就是对学科作出教育学的解释,并把学科知识“心理学化”,以便学生接受与理解。进一步的研究,有一项是以北京97名小学数学教师为调查对象,对其职业知识进行的调查分析。该调查“根据教师的三种知识类型,结合对9名有经验的一线小学数学教师的访谈”分别编制问卷。对于学科知识,主要从小学数学的基本概念、公式的运用及应用题等方面予以考查。“从教师对数学学科知识的掌握情况来看,小学数学教师在学科知识基本概念的理解、公式的运用以及应用题等方面的答对率(题目得分/总分)都在85%以上,说明当前小学数学教师对学科知识的掌握是比较好的”,但“对条件性知识与实践性知识的掌握都不能令人满意”。[5]这里,透视“观念—结论”的变迁,不难发现,它实际上反映了对教学的关注,从学科知识向学科知识与学生认知整合的转移,同时也折射出教学的价值取向,从追求知识传授向追求学生更广泛发展的倾斜。这无疑是一种发展、进步,应当加以肯定。问题在于,首先,为了实现新的追求,教师的本体性知识应达到何种水平,才能保证在对学科知识作教育学的解释和心理学的加工时不至于出现知识性、科学性的偏差。可以说,这一直是一个悬而未决的问题。诚然,要对本体性知识的“某种水平”作出泛学科的、较为一般的具体刻画是困难的,特别是中小学课程内容的不断更新,进一步加大了从理论上作出这一刻画的难度。但是,对现阶段任教某一学段、某一学科的教师,如小学数学教师,他们所拥有的本体性知识水平,是否适应目前正在推行的课程改革的要求,通过调研作出具体判断,却应该是可行的,也是课改推进的实践所十分需要的。其次,用“小学数学的基本概念、公式的运用及应用题”等小学生应该掌握的内容,作为小学数学教师本体性知识的测度项目,是否有失偏颇?换句话说,用“给学生的一杯水”来测量“教师的一桶水”合适吗?那么,又如何来测量教师的一桶水呢?是测量它的量,还是测量它的质?有鉴于上述国内外从量的视角,以静态测度研究数学教师本体性知识所存在的局限性,本研究拟从质的视角,动态考察小学数学教师本体性知识的状况。首先从课堂观察与现象分析入手,发现调研测试的素材,然后从课改推进中的教学需要着眼,确定测量内容,力求使质的测度具有一定的代表性和充分的现实意义,进而辅以访谈与个案研究,使研究更为动态化。(三)新一轮课改实施以来听课观察中发现的问题在近两年来听课观察与对话交流的过程中发现,近一半的课后分析或多或少涉及学科知识的纰漏或对学科知识理解的偏差。其中除了教师教错了之外,还有两类反映教师本体性知识缺失的现象:一是学生提出疑问,教师难以解惑;二是按似是而非地理解加工教学内容。下面各举一例。[案例1]引入平角、周角等概念后,一位青年骨干教师让学生自己提出问题。他把学生的问题板书在黑板上,差不多写了半黑板。可见学生的学习积极性被充分调动起来了。接着,教师让学生小组讨论,看哪些问题自己能解答。随后交流,大家认为满意了,就把该问题擦掉。最后还剩下一大半问题,学生无法解答或有学生试图解答,但其他同学不认可。于是教师说:这些问题,以后进一步学习数学时会明白的。遗留下来的问题中有两个是:0°角与周角有什么区别?有没有大于360°的角?课后,教师坦率地承认,之所以这样处理,是因为自己不知道该如何解释,才能使学生明白。[案例2]教学被除数是0的除法,其中涉及除数不能为0,教师认为:“除数不能为0。这是一个深奥的数学问题,对于二年级学生而言,要理解其意思是有困难的”,就借助了一个情境来帮助学生理解。“小巧每天去森林给小动物分苹果。让我们一起去看看小巧是怎么给小动物分苹果的。”“森林的小屋里住着几只小动物。第一天,小巧带去了6个苹果,出来了3只小动物,平均每只可以得到几个苹果?算式怎么写?”(学生汇报,教师板演,找数量关系)“第二天,小巧没有带去苹果,3只小动物等着小巧。可是怎么分呢?谁来说算式?”“第三天,小巧特地带了6个苹果早早来到小屋。可是等了很长时间,没有小动物出来。(教师板演6÷0=)没有小动物在,分就没有什么意义了。”[6]这确实是一个富有童趣的问题情境:小动物上了一次当,下一次就不来了,由此引出除数是0。颇具艺术性的教学设计。但是,数学中“除数不能为0”是一种规定。要解释它的合理性,通常依据除法的定义,分被除数是0或不是0两种情况加以说明,这超出了小学生的认知能力。然而,当教师采用这个教案教学时,学生很自然地由数量关系类推出:小巧没带苹果,苹果数是0;小动物没来,小动物数为0,于是得出6÷0,那么6÷0等于多少呢?有的说等于6,理由是小动物没来,6只苹果还在;有的说等于0,理由是谁也没有分到苹果。最后还是教师硬性规定“除数为0没有意义”。课后,与几个很会发言的学生继续这一话题,其中就有一个学生提出疑问:“为什么小巧没带苹果可以用0表示,小动物没来,用0表示就没有意义了呢?”看来,“教材把握不好,或者把握偏了,方法越高明,越会南辕北辙。错了、偏了,还有什么艺术可言呢?”[7]类似问题,在数学课程标准新增内容的教学中,显得更加突出。这些问题,至少在中国的文化背景下,在大多数人看来,是不能听之任之的。由此可见,在人们普遍认为当前教师主要缺失条件性知识和实践性知识并全力予以弥补的背景下,在教师的注意力完全集中在教育理念的学习与落实的倾向下,被掩盖着的另一种倾向──教师的本体性知识的缺失,不能不引起我们的关注。尽管有研究表明,中国小学数学教师在数学概念和计算方法的理解方面,明显优于美国小学数学教师。[3](310—311)但这只是说明,我国小学数学教师的本体性知识有一些强项。因为该项比较研究所采用的四个测试题,分别涉及退位减法、三位数乘法、分数除法、长方形周长和面积计算,这些历来是我国小学数学教学的强势内容,而且恰恰是新一轮课改认为“基础过剩”,应当降低教学要求或者已经删去的内容。二、小学数学教师本体性知识缺失状况的调研(一)问卷调查及其结果基于上述由情报研究、案例研究所得出的调研设想,同时也考虑到小学数学教师的学历已经普遍提高,上海地区40岁以下的教师已基本达到大专及以上学历。教师本体性知识的数量,相对于小学数学的“一杯水”来说,已够得上“一桶水”的标准。因此,我们的调研,试图探明“这桶水”的“水质”如何,其中还缺少哪些“微量元素”。为此,设计了两种问卷。A卷的内容是小学数学的基本概念、公式及应用题,题目难度控制在至少有20%的小学毕业班学生能答对的水平上;B卷着重考查教师能否应用所拥有的数学知识为小学生释疑解惑,能否较深入地把握小学数学的教学内容,因此试题都以听课过程中发现的、教师易犯的知识性错误或纰漏为原型加工而成。从试题编制的角度看,这些源于课堂、带有教学情境的数学题几乎都具原创性。两份问卷均经过试测、修改。调研样本为上海市两个区(中心城区、城乡结合区各一个)的部分小学数学教师。样本的教龄分布、学历分布与两区小学数学教师整体的教龄、学历分布大致相同。A卷的平均答对率(题目得分/总分,下同)90.5%表明,用小学生的较高标准来衡量,教师对本体性知识的掌握是不错的。这一结果与申继亮、李琼(2000)的同类测试结果(答对率都在85%以上)基本一致。B卷的平均答对率38.8%表明,用“能为小学生释疑解惑”“能较深入地把握小学数学教学内容”的要求来衡量,则现状与需要的差距较大。两卷分不同教龄组、不同学历组的统计表明,平均分略有差异,但经检验,组际差异均不显著。这说明小学数学教师本体性知识的状况,受教龄长短(即脱离职前教育的时间长短)、学历高低的影响都不具有统计意义上的差异。也就是说,教师本体性知识方面的问题,至少是在测试内容所涉及的范围内早已存在,而且没有因为现阶段教师学历的提高发生根本性的改变。(二)本体性知识缺失的内容分析1.概率统计在小学通常用“可能性”替代数学术语“概率”。将“可能性大小”的初步认识引进小学数学是数学课程改革的趋势之一。B卷中涉及这一知识的试题,平均答对率34.1%。在新增的概率统计内容中,还有中位数、众数的初步认识。B卷内有关中位数、众数的试题,答对率更低,为23.8%。2.图形变换指平面图形的全等变换。原来,在小学阶段只介绍轴对称,现在趋向于在小学就引进平移、旋转。如教育部的数学课程标准将感知轴对称、平移、旋转的内容提前到了第一学段(1~3年级)。[8]上海市数学课程标准的“征求意见稿”[9]中,在3~5年级也安排了轴对称、平移、旋转的初步认识,到“试行稿”[10]该年段只保留了轴对称的初步认识。B卷中有关平面图形全等变换的试题,平均答对率为32.5%。其中答对率相对较高的是下面的题:两个完全一样(全等)的梯形ABCD和A'B'C'D',重叠在一起,经过怎样的几何变换(只允许平移、旋转),可以拼成一个平行四边形?请写清楚变换的过程:如平移使……与……重合,以……为旋转中心旋转……度。该题源于小学数学推导梯形面积的常用方法。教师演示时,通常让学生看清两张梯形纸片完全重合后,就非常随意地拿在手上把它们拼成平行四边形,很少考虑按图形变换来操作。测试表明,42.0%的被试知道经过怎样的变换可以拼成平行四边形,但能准确叙述的只有21.5%。3.几何证明虽说小学数学不要求证明,但教学中常会遇到一些问题,需要教师判断其结论的正确性,或者判断某些特殊的结果是否具有一般性。诸如此类的情况在几何教学中比较多见。B卷中涉及几何证明的试题,平均答对率38.1%。4.数论初步指数的整除性。它作为学习分数知识的必要基础,历来是小学数学的教学内容。B卷中涉及这方面知识的试题,平均答对率为38.3%。共2页: 1 [2] 下一页 论文出处(作者):
新课程背景下小学数学教师 本体性知识的缺失及其对策研究(1)相关推荐